![]() |
Tommy Caldwell (second from left) and Kevin Jorgeson (fourth from left) celebrating their climb of Dawn Wall yesterday afternoon. Credit: Peter Stevens via flickr |
Yesterday afternoon in Yosemite National Park, rock climbers Tommy Caldwell and Kevin Jorgeson made history by completing the first free ascent of Dawn Wall, reputed to be the hardest climb in the world. Caldwell and Jorgeson owe their success to their remarkable perseverance, strength, technique, and also to three key bits of physics keeping them alive.
The Dawn Wall
The Dawn Wall is a 3000 foot route up Yosemite’s famous El Capitan feature.
![]() |
El Capitan, Yosemite, California. Credit: cropped from wasim muklashy via flickr |
Unlike the initial ascent of the Dawn Wall route in 1970, yesterday’s feat marked the first ‘free’ climb of the route. This means that Caldwell and Jorgeson only used their ropes and anchors for protection and not to move upwards. Instead they gripped small features in the wall and balanced on razor-thin ledges. Some sections of the route were nearly impossible and both climbers fell many times before completing the moves.
The Physics of Climbing
Like all climbers, Caldwell and Jorgeson put their lives on the line with every move and fall, trusting in each other, in the correct manufacture of their gear, and most of all, in physics.
Friction
![]() |
Credit: adapted from Bob via flickr |
![]() |
Belay device setup. Credit: adapted from butforthesky.com via Flickr |
![]() |
Gear placed in a crack along the route protects the climber from a fall. Credit: Adapted from McKay Savage via flickr |
Force Balance
Anchors are key to a climber’s safety. They connect the climber to the wall via the rope and the harness, and catch the climber in a fall. Anchors come in all shapes and sizes, and the climber must carefully think about balancing forces in both magnitude and direction.
One of the first rules about anchor building is redundancy. Never use one anchor point when you can have two. Therefore the most common type of anchor is the V-shaped anchor with two separate connections to the wall, joined by a piece of webbing.
If the angle at the bottom of the V is too large (> 120 degrees), then the force on each of the anchors can actually be greater than the total weight of the climber and means either anchor is more likely to fail.
The figure below shows the force placed on each anchor, for a range of angles. (If you’re interested how the forces add, here’s the math). Climbers try to keep the angles as small as possible in order to reduce the force on their anchors.
![]() |
The ‘American death triangle’. This anchor adds more force to each anchor because of the horizontal connection. Credit: author, Tamela Maciel |
Without properly considering the physics of forces, it’s possible to add a dangerous amount of load to each anchor. The so-called American death triangle is a classic example of this. A single piece of webbing joins two anchors and the climber in a triangle shape. The tension in the horizontal section of webbing adds an additional force to each anchor, making it more likely to fail under a heavy load.
As shown in the left diagram, a triangle anchor with a 40 degree angle at the bottom and a 50 kg climber places a force of 427 newtons on each anchor, compared to only 261 newtons in the similar V-shape anchor above.
Absorption of Kinetic Energy
When a climber takes a big fall, their potential energy is quickly converted into kinetic energy. If the climber is suddenly brought to a halt at the end of the rope, a heavy shock load spreads through the climber’s body, the rope, and the anchor. This sharp force, or impulse, can injure the climber and cause a piece of gear or anchor to fail.
In order to slow down and cushion the halt, an elastic rope is used. By stretching the rope the climber falls a bit further but the impact is much more gentle on the whole system. Kinetic energy is also absorbed by friction of the rope and by careful belay partners who jump up slightly to soften their climber’s fall.
Cushioning can only do so much and for very large falls the anchors, ropes, and climbing gear can still fail. Climbing gear is rated by how much force it can withstand before it breaks, measured in kilonewtons. A basic piece of gear might withstand up to 10 kN before failing — a very large amount of force that would be reached only from the largest of falls.
A “PhD on El Capitan”
Caldwell and Jorgeson are intimately familiar with these rules of climbing physics. The pair prepared for the Dawn Wall climb over the course of seven years, working the moves on individual sections of the route.
“[Caldwell] says this is his thesis, his PhD on El Capitan, everything he’s worked for,” said Becca Caldwell, Tommy Caldwell’s wife, to the Telegraph.
For the final climb from bottom to top, Caldwell and Jorgeson spent 19 days on the route without ever touching the ground. They slept in portaledges, tent-like platforms suspended from anchors in the wall, and used extra ropes to haul gear. They finally reached the top of El Capitan yesterday mid-afternoon west coast time, welcomed by friends, family, and climbing fans.
—
By Tamela Maciel, also known as “pendulum”